- Bạn vui lòng tham khảo Thỏa Thuận Sử Dụng của Thư Viện Số
Tài liệu Thư viện số
Danh mục TaiLieu.VN
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 10 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 10, chương này cung cấp cho học viên những nội dung về: phân cụm; bài toán phân cụm; phân cụm dựa trên phân tách - k-Means; phân cụm phân cấp - HAC; học có giám sát (Supervised learning); học không có giám sát (Unsupervised learning);... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
42 p cntp 23/04/2024 29 1
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Bài toán phân cụm, Phân cụm dựa trên phân tách k-Means, Phân cụm phân cấp HAC, Học có giám sát
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 4 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 4, chương này cung cấp cho học viên những nội dung về: bài toán hồi quy; hồi quy tuyến tính (Linear regression); hàm đánh giá lỗi; giải thuật hồi quy tuyến tính; quy tắc delta; các điều kiện kết thúc quá trình học;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
15 p cntp 23/04/2024 28 0
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Bài toán hồi quy, Hồi quy tuyến tính, Hàm đánh giá lỗi, Giải thuật hồi quy tuyến tính
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 5 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 5, chương này cung cấp cho học viên những nội dung về: phân lớp; bài toán phân lớp; học dựa trên các láng giềng gần nhất (Nearest neighbors learning); ma trận nhầm lẫn (Confusion matrix); giải thuật phân lớp k-NN;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
24 p cntp 23/04/2024 24 0
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Bài toán phân lớp, Học dựa trên các láng giềng gần nhất, Nearest neighbors learning, Giải thuật phân lớp k-NN
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 7 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 7, chương này cung cấp cho học viên những nội dung về: phân lớp; cây quyết định (Decision tree); học cây quyết định (Decision tree –DT– learning); biểu diễn cây quyết định; giải thuật ID3; học cây quyết định và chiến lược tìm kiếm;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
37 p cntp 23/04/2024 23 0
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Cây quyết định, Decision tree, Biểu diễn cây quyết định, Học cây quyết định
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 6 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 6, chương này cung cấp cho học viên những nội dung về: phân lớp; các phương pháp học dựa trên xác suất (Probabilistic learning); các khái niệm cơ bản về xác suất; biểu diễn xác suất; xác suất có điều kiện; các biến độc lập về xác suất;... Mời các bạn cùng tham khảo chi tiết nội dung bài...
32 p cntp 23/04/2024 31 1
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Phương pháp học dựa trên xác suất, Probabilistic learning, Biến ngẫu nhiên đa trị, Biểu diễn xác suất
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 2 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 2, chương này cung cấp cho học viên những nội dung về: tập dữ liệu; các kiểu tập dữ liệu; các kiểu giá trị thuộc tính; biểu đồ histogram; đồ thị rải rác (Scatter plot); các nhiệm vụ chính của tiền xử lý dữ liệu;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
31 p cntp 23/04/2024 21 0
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Tiền xử lý dữ liệu, Tập dữ liệu, Dữ liệu chuỗi di truyền, Biểu đồ histogram
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 1 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 1, chương này cung cấp cho học viên những nội dung về: giới thiệu học máy (Machine learning) - khai phá dữ liệu (Data mining); các ứng dụng thành công của học máy; quá trình học máy; các thành phần chính của bài toán học máy;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
54 p cntp 23/04/2024 21 0
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Quá trình học máy, Phương pháp học hồi quy, Phương pháp học quy nạp luật, Phương pháp học cây quyết định
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 8 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 8, chương này cung cấp cho học viên những nội dung về: phân lớp; mạng nơron nhân tạo (Artificial neural network); các ứng dụng điển hình của mạng nơron nhân tạo; cấu trúc và hoạt động của một nơ-ron; kiến trúc mạng nơron nhân tạo;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
69 p cntp 23/04/2024 25 0
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Mạng nơron nhân tạo, Artificial neural network, Mạng nơ-ron học sâu, Quy tắc học trọng số tổng quát
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 3 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 3, chương này cung cấp cho học viên những nội dung về: đánh giá hiệu năng của hệ thống; các phương pháp đánh giá; tập tối ưu (Validation set); các tiêu chí đánh giá hiệu năng của hệ thống; lựa chọn mô hình đánh giá hiệu năng của hệ thống;... Mời các bạn cùng tham khảo chi tiết nội dung bài...
19 p cntp 23/04/2024 16 0
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Đánh giá hiệu năng hệ thống, Tiêu chí đánh giá hiệu năng hệ thống, Nguyên lý Occam’s razor, Đánh giá hiệu năng hệ thống học máy
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 9 - Nguyễn Nhật Quang
Bài giảng Nhập môn Học máy và Khai phá dữ liệu: Chương 9, chương này cung cấp cho học viên những nội dung về: phân lớp; máy vectơ hỗ trợ (Support vector machine); mặt siêu phẳng phân tách; mặt siêu phẳng có lề cực đại; dữ liệu phân tách được tuyến tính (SVM); tính toán mức lề;... Mời các bạn cùng tham khảo chi tiết nội dung bài giảng!
48 p cntp 23/04/2024 15 0
Từ khóa: Bài giảng Nhập môn Học máy và Khai phá dữ liệu, Nhập môn Học máy và Khai phá dữ liệu, Máy vectơ hỗ trợ, Support vector machine, Mặt siêu phẳng phân tách, Lý thuyết tối ưu có ràng buộc
Nội dung bài viết về một giải pháp để nâng cao hiệu quả dự báo chuỗi thời gian bằng việc kết hợp giữa mạng nơron FIR và mô hình ARIMA, các trọng số sẽ được biến đổi theo thời gian.
10 p cntp 30/07/2020 287 1
Từ khóa: Mô hình dự báo, Chuỗi thời gian, Mạng nơron FIR, Xây dựng mô hình ARIMA, Kỹ thuật khai phá dữ liệu chuỗi thời gian
Vai trò của khai phá dữ liệu trong lĩnh vực kiểm toán và dịch vụ đảm bảo
Mục tiêu bài viết nhằm tổng quan các ứng dụng của kỹ thuật khai phá dữ liệu trong lĩnh vực kiểm toán. Ứng dụng khai phá dữ liệu trong lĩnh vực kiểm toán liên quan đến dịch vụ đảm bảo và tính tuân thủ (phát hiện gian lận, tình hình tài chính) và kế toán điều tra. Qua đó, giúp hiểu hơn về vai trò của khai phá dữ liệu và rộng hơn là dữ liệu...
8 p cntp 28/11/2019 350 1
Từ khóa: Khai phá dữ liệu, Vai trò của khai phá dữ liệu, Kiểm toán và dịch vụ đảm bảo, Hành vi điều chỉnh lợi nhuận, Kế toán điều tra
Đăng nhập